

OpenBSD as house alarm system

OpenBSD is not only for Network related projects

Fosdem 2018

Email: vincent.delft@easytransitions-ict.be

Blog: http://vincentdelft.be

Company: http://easytransitions-ict.be

mailto:vincent.delft@easytransitions-ict.be
http://vincentdelft.be/

Topics for today

● Components (hw, sw, coding, configs)
● Lessons learned since 1998
● Problems with linux
● Why openbsd ?
● New system based on Denkovi
● Putting OpenBSD Read-only
● Conclusions

Monitor my house

● The goals are :

– To monitor the whole house via PIR captors
with the concept of zones

– Start a siren in case of intrusion

– Send message (SMS) in case of intrusion

– Be able to react on my SMS (status, activate,
de-activate, ...)

– Have a web interface in order to check the logs

– Have a webcam in order to check the main
entrances

– Cheap solution

Hardwares

● I’ve started this project with a Velleman
kit : K8000.

● An GSM Modem to send/receive SMS

● A cheap Atom 330 board with serial
and parallel ports: 4GB Ram, 1.6Ghz,
no disk.

● A powerful OS

Softwares

● For K8000 is has to be i386 (until OpenBSD
6.0)

● Httpd
● FTPd
● C compiler
● Python2

Programs

● Develop a C program to loop around « inb » and « oub » API to
check the status of the 16 IO ports of the K8000 (i386 !!).

● Program loop around the IO ports and react based on the IO
status

● But ...

SMS

● pkg_add smstools3

● Remove the pin code at SIM when booting

● Config is like this:

[GSM1]

device = /dev/cua00

incoming = yes

cs_convert = yes

init = AT+CHUP

eventhandler = /home/vi/smsd_event.py

SMS

● Define an event handler to treat the incoming SMS:
<prog> RECEIVED /path/to/SMSfile

From: 32475xxxxxx
From_TOA: 91 international,
ISDN/telephone
From_SMSC: 324xxxxxxx
Sent: 17-11-02 15:29:51
Received: 17-11-02 15:30:03
Subject: GSM1
Modem: GSM1
IMSI: 206106500xxxxx
IMEI: 350301410xxxxx
Report: no
Alphabet: ISO
Length: 6

Status

SMS

● To send an SMS you just have to write a file
in /var/spool/sms/outgoing/<file>

To: 32475xxxxxx

The status is OK

Webserver

● Must be light, easy to use, ...

● At beginning it was fapws (fapws.org). Light python wsgi web server.

● Now I’m using openbsd-httpd with simple cgi scripts

● Fapws was 9KB memory, httpd is 2x3KB. But httpd is maintained by
the openBSD community :-).

● Web server run in a chroot environment where only the logs and
webcam images reside.

● This interface is not able to configure the alarm !!!

● Dynamic IP manage via freedns.afraid.org and cron ftp every 5
minutes

Webcam

● Old Axis camera found in ebay

● Send pictures via FTP. Use motion detection

● OpenBSD machine configured with ftpd:

● /etc/rc.conf.local must contain this: ftpd_flags="-
llUSA" (for logging purposes)

● Create a valid user: useradd …

● Add this user in /etc/ftpchroot.

● Inform your camera that they can use this ftp-server / user

Lessons learned since 1998

● The time spent after each upgrade is not to under-estimate, surely
with Linux distros I had

● Replace the main board every 6 or 7 years
● Always have a backup Power supply.
● Do not under estimate the different power cuts (storm, technicians, ...)
● Every year perform a cleaning of the IR captors
● Be ready to manage false alarms (cats, insects, heat systems, ...).
● Advise your neighbors (loud sirens)
● Foresee a remote access in order to manage problems
● For your bills, prefer recent low consumption board to old hardware.

Problems with linux

● I’ve run slackware (4y), redhat (3y), then gentoo
(3y) between 1998 and 2007

● Several problems:
– upgrade problems: pkg names, ...

– Rules: lot of dependencies, ...

– Disks crashes (ext2)

Advantages of OpenBSD

● No more disk crashes !!!. the disk was spinning between 2009
and until 2016 24hx7.

● Upgrades are really easy with OpenBSD (but I’m doing the un-
recommanded upgrade process because I do not have easy
access to the serial console)

● No more C program updates, but … .

● In OpenBSD, features are mature

● Secure by default.

● Very good man pages

(dis)Advantages

● But …

● Ted Unangst remove hopes to have ioperm, … for amd64 on
may 2013.

● “inb”, “outb” and “ioperm” removed from OpenBSD 6.0 (2016)

CVSROOT: /cvs
Module name: src
Changes by: guenther@cvs.openbsd.org 2016/03/23 22:56:08
Modified files:
 lib/libarch/i386: Makefile
 sys/arch/i386/i386: machdep.c sys_machdep.c
 sys/arch/i386/include: pcb.h sysarch.h
Removed files:
 lib/libarch/i386: i386_get_ioperm.2 i386_get_ioperm.c
 i386_set_ioperm.c
Log message:
Delete i386_{get,set}_ioperm(2) APIs and underlying sysarch(2) bits.
They're no longer used by anything and should let us simplify the TSS
handling.
ok mikeb@ naddy@

New system

● I’ve bought Denkovi SNMP controller
with 24 I/O (<60 euro)

● IR ans sirens are connected via opto
coupler (home made)

New system

● Alarm program has been rewritten in Python. It loops around
the SNMP get to detect PIR events. Generate SNMP set to
trigger sirens.

● SMS-tools and ftpd and httpd are still there.

● To avoid complicated fsck, this new system is now diskless for
the system (webcam pictures are still on a disk).

– Boot from USB drive

– Put most file systems in RO

– Other are in memeory (mfs)

How to build a read only
OpenBSD ?

● Boot bsd.rd and install a normal OpenBSD system on your
connected USB drive

● Adapt the filesystems so that you have 1 filesystems: “/”.

● Reboot and adapt fstab like this:

–

– mkdir /cfg

– cp -Rp /var /cfg/

– cp -Rp /dev /cfg/; cd /cfg/dev ; MAKEDEV all

53c5718cfea7b5b4.a / ffs ro,wxallowed 1 1
swap /var mfs rw,-P=/cfg/var,-s=800m 0 0
swap /dev mfs rw,-P=/cfg/dev,-s=32m 0 0
swap /tmp mfs rw,-s=64m 0 0

Read only OpenBSD

● Simple, no ?
● Point of attentions:

– Since 1GB will be filesystem, please use at least 4GB RAM.

– Have an USB-2 port. I cannot boot from USB connected on USB-
3 (maybe my fault).

– Before each change, perform “mount -uw /” and after “mount
-ur /”

– After each pkg_add (or httpd, ...), update your /cfg/var. For
example do “rsync -a –delete /var /cfg”

● For the rest, the machine is exactly like a normal OpenBSD

Future idea

● Put most of elements under POE (for camera)

Conclusions

● OpenBSD is by far the simplest operating system I’ve worked with since
1998.

● OpenBSD is very flexible: old and new hardware, read-only filesystem, ...

● Man pages are complete, up-to-date and really useful.

● No need to review your whole setup after an upgrade (2x per year).

● Upgrade is FTR and takes +- 30 minutes on average per machine. Delay is
mainly because of my network connection.

● Lot of developers are maintaining it and keep it secure (syspatch)

● Do not listen to people saying “bsd is dying, bsd is no more an option today,
bsd is just for network tasks, ...”. Make your own evaluation by your self.

● BSD is perfect system for an House security system.

Questions ?

Email: vincent.delft@easytransitions-ict.be

Blog: http://vincentdelft.be

Company: http://easytransitions-ict.be

	Slide 1
	Slide 2
	Slide 3
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

